		Description	Horizon. (m)	Elevation	Elevation Finish	Vertical (m)	$\begin{gathered} \hline \text { Angle } \\ \text { (Degrees) } \end{gathered}$	Gradient		Slope (\%)	HypotenuseLength (m)
Pinehaven Stream segments								Y	x		
Segment 1	Yellow	Overland sheet flow	50	385	380		5.7	1	10.0	10.0\%	
Segment 2a	Light Orange	Shallow Concentrated Flow	150	380	350	30	11.3	1	5.0	20.0\%	153.0
Segment 2b	Dark Orange	Shallow Concentrated Flow	310	350	220	130	22.8	1	2.4	41.9\%	336.3
Segment 3	Purple	Small open natural channel	420	220	150	70	9.5	1	6.0	16.7\%	425.8
Segment 4	Blue	Larger open natural channel	320	150	120	30	5.4	1	10.7	9.4\%	321.4
Segments 1-4		Overall hydraulic lensth	1,250	385	120	265	12.0	1	4.72	21.2	1,279

Time of Concentration (TC)
$\mathrm{T} \mathrm{C}=\mathrm{T} 1+\mathrm{T} 2+\ldots+\mathrm{Tm}$
$\mathrm{Tc}=\mathrm{T} 1+\mathrm{T} 2+\ldots+\mathrm{Tm}$
$\mathrm{m}=$ number of stream segments
WELINGTON METHOD:
$\begin{array}{ll}\text { Segment } 1 \text { - Overland sheet flow } & \mathrm{T} 1=\text { Time in minutes } \\ \text { (Wellington Water Ltd - Cardno 2019) } n=\text { Horton's coefficient }=0.06 \text { for bush (dense grass - see Cardno worked exxample }\end{array}$
$\begin{array}{lll}\text { (Wellington Water Ltd - Cardno 2019) } & n=\text { Herton's coefficient }=0.06 \text { for b } \\ L=\text { Length of overiand flow }=50 \mathrm{~m}\end{array}$
$\mathrm{T}_{1}=107 \mathrm{~nL} \mathrm{\wedge} 0.33 / \mathrm{S}^{\wedge} 0.2 \quad \mathrm{~S}=$ Slope in $\%=10 \%$
Time of overland sheet flow $=\mathrm{T} 1=107 \times 0.06 \times 50^{\wedge} 0.33 / 10^{\wedge} 0.2=14.7$ minute \quad Check: 14.7 minutes

Segment 2a - Shallow concentrated flow (Wellington Water Ltd - Cardno 2019)	T2a $=$ Time in minutes $L=$ Length of shallow concentrated flow $=150 \mathrm{~m}$ T2a $=L / 295 \mathrm{~S}^{\wedge} 0.5$
$\mathrm{~S}=$ Slope $=(380-350) / 150=0.20 \mathrm{~m} / \mathrm{m}$	

Time of shallow concentrated flow $=\mathrm{T} 2 \mathrm{a}=150 / 295 \times 0.2^{\wedge} 0.5=1.1$ minutes \quad Check: $\quad 1.1 \quad$ minutes

Segment 2b - Shallow concentrated flow
(Wellington Water Ltd - Cardno 2019)
$\mathrm{T} 2 \mathrm{~b}=\mathrm{L} / 295 \mathrm{~S}^{\wedge} 0.5$
$\mathrm{s}=\mathrm{Slope}=(350-220) / 310=0.42 \mathrm{~m} / \mathrm{m}$

Segment 3 - Small open channel flow*
Velocity of open channel flow $=\mathrm{V}=1 / \mathrm{n} \times\left(\mathrm{Rh} \wedge^{2} / 3\right) \times\left(\mathrm{SN}^{1 / 2}\right)$
$V=1 / 0.09 \times 0.31^{\wedge} 2 / 3 \times 0.17^{1} 1 / 2=2.1 \mathrm{~m} / \mathrm{s} \quad 2.1$
$\mathrm{S}=$ slope of channel $=(220-150) / 420=0.17 \mathrm{~m} / \mathrm{m}$
$\mathrm{Rh}=$ hydralic radius = Area $/$ Wetted Perimeter
Area $=1.5 \mathrm{~m} \times 0.7 \mathrm{~m}=1.05 \mathrm{~m} 2($ width \times depth of channel)
Wetted perimeter $=0.7+1.5+0.7=2.9 \mathrm{~m}$ (perimeter
$\mathrm{Rh}=0.9 / 2.9=0.31 \mathrm{~m}$

Velocity of open channel flow $=\mathrm{V}=1 / \mathrm{n} \times($ Rh $\wedge 2 / 3) \times\left(S^{\wedge} 1 / 2\right)$
$V=1 / 0.12 \times 0.5 \wedge 2 / 3 \times 0.094 \wedge 1 / 2=1.6 \mathrm{~m} / \mathrm{s}$
$\mathrm{n}=$ Manning's $\mathrm{n}=0.12$
$\mathrm{s}=$ slope of channel $=(150-120) / 320=0.094 \mathrm{~m} / \mathrm{m}$
Rh $=$ hydraulic radius $=$ Area $/$ Wetted Perimeter
Area $=2.0 \mathrm{~m} \times 1.0 \mathrm{~m}=2.024$
Area $=2.0 \mathrm{~m} \times 1.0 \mathrm{~m}=2.0 \mathrm{~m} 2$ (width of channel \times depth of channel)
Wetted perimeter
1.6 Rh $=2.0 / 4.0=0.5 \mathrm{~m}$

At this velocity it takes $320 \mathrm{~m} \div 1.6 \mathrm{~m} / \mathrm{s}=199$ seconds $=3.1$ minutes to travel the large open channel diste \quad Check: $\quad 3.3$ minutes

*Talbot Formula: $\mathrm{A}=\mathrm{CM} \mathrm{M}^{\wedge} 3 / 4$	where	$A=$ waterway area in square ft	91.9 acres
		$\begin{aligned} & M=\text { catchment area in acres }=50 \% \times 74.4 \text { ha } \times 2.47=\text { acres } \\ & C=\text { constant }=0.6 \text { for rolling to hilly } \end{aligned}$	
$\mathrm{A}=0.6 \times 9.9 .9 \mathrm{M} / 4 / 4$			
1.65 m 2	compares ok with waterway area of 1.05 m 2		
** Talbot Formula: A = CM^3/4	where	$A=$ waterway area in square ft	
		$\begin{aligned} & M=\text { catchment area in acres }=74 \mathrm{ha}=2.47 \times 74=\text { acres } \\ & C=\text { constant }=0.6 \text { for rolling to hilly } \end{aligned}$	183.8 acres
$\begin{gathered} A=0.6 \times 183.8 \mathrm{~B}^{3 / 4} \\ 30.0 \mathrm{ft2} \end{gathered}$			
$2.78 \mathrm{m2}$	compare	kwith waterway area of 2.0 m 2	

$30.0 \mathrm{ft2}$
2.78 m 2

```
Alternative method:
Bransby Williams equation:
(from Cardno, 2019, Equation 6)
    where Tc is in minutes
    Fis 92.7
    L is length in kilometres (km
    A is area in hectares (ha)
    S is slope in metres per kilometre (m/km
Tc= (1)
Tc= 115.875 \div% 1.54 2.90
```


$\mathrm{Tc}=\mathrm{FL} / \mathrm{A}^{\wedge} 0.1 \mathrm{~s}^{\wedge} 0.2$


```
A is area in hectares ha
\(\mathrm{Tc}=\quad 92.7 \times\) say \(1.25 \mathrm{~km} /(74.4 \mathrm{ha})^{0.1} \times(256 \mathrm{~m} / 1.25 \mathrm{~km})^{\wedge} 0.22\)
\(\mathrm{Tc}=\quad 26.0\) minutes
```

Time of Concentration Tc (see Wellington Method opposite):

$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\ldots+\mathrm{Tm}$ $\mathrm{m}=$ number of strean

Time of Concentration $=\mathrm{T} \mathrm{C}=14.7+1.1+1.6+3.3+3.3=24.1$ minutes

$$
\text { SCS Lag time }=2 / 3 \times \text { Tc }=\quad 16.1 \quad \text { minutes }
$$

Gradient of Sub-catchment B

Section through Sub-catchment B showing average slope $=20.6 \%$ approx. Aerial View of Sub-catchment B (showing 20 m contours)

Equal Area Method					
Elevation (m)	$\mathrm{h}(\mathrm{m})$	$\mathrm{x}(\mathrm{m})$	delta \times (m)	ave h (m)	delta A (=h.delta
0.0	0.0	0.0			
10.0	10.0	81.5	81.5	5.0	407.5
20.0	20.0	136.8	55.3	15.0	829.5
30.0	30.0	175.4	38.6	25.0	965.0
40.0	40.0	250.6	75.2	35.0	2632.0
50.0	50.0	387.7	137.1	45.0	6169.5
60.0	60.0	440.3	52.6	55.0	2893.0
70.0	70.0	452.2	11.9	65.0	773.5
80.0	80.0	463.2	11.0	75.0	825.0
90.0	90.0	501.2	38.0	85.0	32300
100.0	100.0	526.6	25.4	95.0	2413.0
110.0	110.0	584.5	57.9	105.0	6079.5
120.0	120.0	607.3	22.8	115.0	2622.0
130.0	130.0	619.7	12.4	125.0	1550.0
140.0	140.0	632.6	12.9	135.0	1741.5
150.0	150.0	657.6	25.0	145.0	3625.0
150.0	150.0	704.6	47.0	150.0	7050.0
170.0	170.0	839.4	134.8	160.0	21568.0
190.0	190.0	912.6	73.2	180.0	13176.0
210.0	210.0	950.5	37.9	200.0	7580.0
230.0	230.0	997.4	46.9	220.0	10318.0
250.0	250.0	1059.5	62.1	240.0	14904.0
270.0	270.0	1191.1	131.6	260.0	34216.0
275.0	275.0	1237.9	46.8	272.5	12753.0
					158321.0
L	1237.9				
$\mathrm{s}_{\text {c }}$	0.207				

Pinehaven Stream - Sub-catchment B
Segment 2a: Shallow Concentrated Flow (uphill from the road)

Segment 2a (Contd.): Shallow Concentrated Flow (uphill from the road)

Segment 2b: Shallow Concentrated Flow (downhill from the road)

Pinehaven Stream - Sub-catchment B
Segment 2b (Contd.): Shallow Concentrated Flow (downhill from the road)

Segment 3 (Contd.): Large open channel flow

7 Time of concentration

Time of concentration $\left(\mathrm{t}_{\mathrm{c}}\right)$ is the time required for runoff to travel from the hydraulically most distant point in a catchment to the outlet. The hydraulically most distant point is the point with the longest travel time to the catchment outlet and not necessarily the
point with the longest flow path to the outlet. Time of concentration is generally applied only to surface runoff and may be calculated using many different methods.
The method suggested here relates to water moving through a catchment first as sheet and shallow concentrated flow, network flow and finally as open channel flow. In effect, the various flows.

$$
\begin{aligned}
& \boldsymbol{T}_{\boldsymbol{c}}=\boldsymbol{T}_{t 1}+\boldsymbol{T}_{t 2}+\cdots . . \boldsymbol{T}_{t m} \\
& \boldsymbol{T}_{c}=\text { Time of concentration (hours) } \\
& M=\text { number of individual flow segments }
\end{aligned}
$$

Equation 7-1

To determine the time of concentration for a site it is necessary to assess the individual flow segments present at the site, i.e. the portion of the site that has sheet flow and the portion of the site that has network flow, be it road flow, piped flow or open channel

Individual travel times need to be determined for each flow segment using the information provided in the following subsections. The travel times for each flow segment are then added together in accordance with Equation 7-1 above to determine the site time of concentration.

This assessment needs to be undertaken for pre- and post-development conditions at the site. When time of concentration is less than 0.1 hours, the minimum value of 0.1 hours should be used.
Variation to this requirement requires concurrence with council review staff.

7.1 Sheet and shallow concentrated flow

Sheet and shallow flow is usually found at the top of catchments. The travel time for sheet flow incorporates Manning's roughness coefficient (n) and an equation for sheet
and shallow channel flow is provided below.
$T_{t}=100 n L^{0.33} / S^{0.2}$
Equation 7-2
Where:
$T_{\mathrm{t}}=$ time in minutes
$L=$ length of overland flow in metres
$S=$ slope in \%
$n=$ Mannings value for surface roughness coefficient (typical values given in Table 7-1)

Cardino
Reference Guide for Design Storm Hydrology
Standardised Parameters for Hydrological Modelling

Table 2-2	Minimum time of concentration	
	Minimum time of concentration	
Minimum time of entry Overland and gutter flow. For catchments discharging directly into a hydraulic model where the piped stormwater network and open channel are explicity modelled.	5 minutes	
Minimum time of entry + time of pipe and channel flow	10 minutes	
Overland, gutter, pipe and channel flow. For catchments where the piped stormater network and open channels are not explicitity modelled.		

Consideration should be given to how runoff from the furthest point in the catchment drains to flood conditions (the outlet being the point of discharge from the catchment, or the point of entry into a hydraulic model). In flood conditions runoff may exceed the capacity of the piped stormwater network and
travel as gutter flow or channel flow. If the piped stormwater network is incorporated into the hydrological travel as gutter flow or channel flow. If the piped stormwater network is incorporated into the hydrological
model (rather than explicitly modelled in a hydraulic model), it may be necessary to use a different time o model (rather than explicitly modelled in a hydraulic model), it may be necessary to use a different time of concentration, and the capacity of the piped stormwater network is less than the design event.
To estimate the time of concentration of the component parts, time of overland flow (also often referred to as sheet flow) can be determined using Friend's equation [Equation 8], time of shallow concentrated flow for pervous areas can be estimated from Manning's derived equation for unpaved areas [Equation 9], and
impervious areas from Manning's derived equation for gutter flow [Equation 10]. Time of pipe flow can be estimated as a function of pipe velocity [Equation 11] and time of open channel flow can be estimated from
Manning's equation [Equation 11, 12 and 13].

$$
\text { Time of overland flow }=\frac{107 n L^{0.333}}{s^{0.2}}
$$

[Equation 8]
Where overland flow is in minutes;
n is Horton's roughness value for the surface;
L is length in metres (m); and
s is slope in percentage (integer i.e. 3.0 for 3%)
Horton's roughness values are similar, though not identical, to Manning's n. Horton's roughness values are detailed in Table 2-3.
\qquad
Table 7-1: Mannings \boldsymbol{n} roughness values for overland flow

Surface type	n
Asphaltconcrete	0.011
Bare sand	0.01
Bare clay/loam	0.012
Gravelled surface	0.012
Short grass	0.15
Lawns	0.24
Pasture	0.30
Dense bush	0.40

Cardmo

Table 2-3	Horton's roughness values
Surface Type	Horton's roughness values
Paved	0.015
Bare Soil	0.0275
Poorly Grassed	0.035
Average Grass	0.045
Dense Grass	0.06

Overland flow in urban areas is typically short in the order of 20 to 50 m . In rural residential and rural areas the length of overland flow may be up to 200 m , thereafter the flow forms small rills, channel and tracks and the length of overland flow may be up to 200 m , thereafter the flow forms small rils, channel and track
is referred to as shallow concentrated flow. Table $2-4$ provides the maximum recommended length of overland flow.
Table 2-4 Recommended maximum length of overland sheet flow

Surface condition	Assumed maximum flow length (m)
Urban	50
Steep (i.e. $>10 \%$) grassland (Horton's $\mathrm{n}=0.045$)	20
Steep (i.e. $>10 \%$) bushland (Horton's $\mathrm{n}=0.035$)	50
Medium gradient (approx.. 5\%) bushland or grassland	100
Flat $(0-1 \%)$ bushland or grassland	200
S	

Flat $(0-1 \%)$ bushland or grassland
Source: Queensland Urban Drainage Manual, 2013

$$
\text { Time of shallow concentrated flow }=\frac{L}{2955^{0.5}}
$$

[Equation 9]
Where shallow concentrated flow is in minutes L is length in metres (m); and S is slope in metres per metre $(\mathrm{m} / \mathrm{m})$

Using manning's derived formula to estimate velocity [Equation 12] R_{n} is assumed to be equal to the depth of Using manning's derived formula to estimate velocity [Equation 12] R_{n} is assumed to be equal to the depth waterway of 0.12 m deep and a Manning's roughness value of 0.05 (multiplied by 60 to convert to minutes)

$$
\text { Time of gutter flow }=0.025 \frac{L}{s^{0.5}}
$$

7.2.3 Open channel flow

The time of flow in open channels can be determined by using the Manning equation to The time of flow in open channels can be dannings equation is shown in the following equation:

$$
V=R^{2 / 3} S^{1 / 2} / n
$$

Equation 7-3
Where:
$V=$ mean velocity of flow (m / s)
$S=$ the slope of the hydraulic energy gradient - normally can be $R=$ hydraulic radius (m)
$n=$ Manning's roughness coefficient
The time of flow in the open channel, can then be calculated based on the total length of the channel and the mean velocity of flow along the channel.
7.3 Catchment flow

There are a number of equations that can be used for calculating the catchment time of There are a number of equations that can be used for calculating the catchment time of
concentration. The one mentioned below is from the Ministry of Business, Innovation and Employment Department of Building and Housing guidance on E1 Surface Water.

$$
t_{c}=0.0195\left(L^{3} / H\right)^{0.385}
$$

Where:
$t_{c}=$ time of concentration (minutes)
$L=$ Length of catchment (m) measured along the flow path
$H=$ rise from bottom to top of catchment (m)
This equation can be used in catchments where there are significant changes in gradient along the channel slope or where the open channel is in a rural area, which
would apply to most situations in the Waikato Region.

7.4 Alternative equations

Other equations for calculating time of concentration include;

- NRCS lag formula, where 1.67 times the lag equals the time of concentration
- The Carter lag equation for catchments that are partially natural channels and partially reticulated
- The Eagleson lag equation that includes a factor for converting lag to time o concentration, and
- Kerby-Hathaway formula for calculating the time of concentration for very smal catchments in which surface flow dominates

There are numerous other equations that may be adequate depending on the situation that they are used. When calculating the time of concentration, justification should be provided for the equation used. Reference Guide for Design Stom Hydrology
.

Where gutter flow is in minutes
is length in metres (m); and
s is slope in percentage (i.e. 3 for 3%)

$$
\text { Time of pipe flow }=\frac{L}{V \times 60}
$$

[Equation 11]
Where pipe flow is in minutes based on the velocity of flow: is length in metres (m) : and
V is $3 \mathrm{~m} / \mathrm{s}$ for low gradients less than 5%, and $5 \mathrm{~m} / \mathrm{s}$ for moderate to steep gradients

Velocity of open channel flow $(V)=\frac{1}{n}\left(R_{h}^{2 / 3}\right)\left(S^{1 / 2}\right)$
[Equation 12]
Where the velocity of open channel flow is in metres per second $(\mathrm{m} / \mathrm{s})$: n is Manning's n;
S is the bottom slope of the channel in metres per metre (m / m)

$$
\text { Where } R_{n} \text { can be calculated from }
$$

$$
R_{h}=\frac{A}{P}
$$

[Equation 13]
where A is the cross-sectional area in metres squared $\left(\mathrm{m}^{2}\right)$; and
is the wetted perimeter of the cross-sectional area of flow in metres (m)

Time of open channel flow can therefore be estimated from channel length over velocity.

$$
\text { Time of open channel flow }=\frac{L}{V \times 60}
$$

Where time of open channel flow is in minutes: is length in metres (m): and
V is in metres per second (m / s)
\qquad Date: \qquad
Location: North of Hamilton Checked: \qquad Date: \qquad
Scenario: Pre-developed (Pre-developed or post-developed)

1. Runoff Curve Number (CN) and Initial Abstraction (I_{a})

Soil name and classification	Cover description (cover type, treatment and hydrologic condition	Curve Number (CN)	ARea $\left(\mathbf{k m}^{2}\right)$	Product of CN \times Area
Orthic brown soil	Pasture	69	0.2	13.8
TOTALS				

$\mathrm{CN}($ weighted $)=\frac{\text { Total Product of } C N x \text { Area }}{\text { Total Area }}=13.8 / 0.2=69$
nitial abstraction
$S=\left(\frac{1000}{c \mathrm{c}}-10\right) 25.4(\mathrm{~mm})=(1000 / 69-10) \times 25.4=114.3 \mathrm{~mm}$
$I_{a}=0.05 \mathrm{~S}=0.05 \times 114.3=5.71 \mathrm{~mm}$
2. Time of Concentration (T_{c})
(a) Sheet and shallow concentrated flow

From Equation 7-2 or from Figure 7-1: From Equation 7-2 as it is a rural catchment
$T_{t}=100 n L^{0.33} / \mathrm{s}^{0.2}=100 \times 0.3 \times 3000.33 / 20.2=171.5$ minutes
$n=0.3$ (Manning's n roughness for pasture from Table 7-1)
$L=300 \mathrm{~m}$ (length of overland flow)
$\mathrm{S}=2 \%$
(b) Concentrated network flow
i. Road channel flow from Figure 7-2: Nil for pre-developed
ii. Pipe network flow from Table 7-2 and Figure 7-3: Nil for pre-developed
iii. Open channel flow from Equation 7-3.
$V=R^{2 / 3} S^{1 / 2} / n$
The flow goes through a transition at approximately 300 m to open channel flow for a length of 340 m . The channel is relatively small with

${ }^{20}$
the depth approximately 0.5 m , the width approximately 0.4 m and with near vertical side slopes. The slope of the channel is 2% $(0.02 \mathrm{~m} / \mathrm{m})$. The Manning's roughness coefficient for the channel is 0.12 as it is densely vegetated and not maintained.
$R=$ hydraulic radius $=$ Area $/$ wetted perimeter
Area $=0.4 \times 0.5=0.2 \mathrm{~m}^{2}$ (width of channel \times depth of channel)
wetted perimeter $=0.5+0.4+0.5=1.4 \mathrm{~m}$ (perimeter of the cross sectional area that is wet)
$R=0.2 / 1.4=0.14 \mathrm{~m}$
$V=0.14^{2 / 3} \times 0.02^{1 / 2} / 0.12$
$=0.31 \mathrm{~m} / \mathrm{s}$
At this velocity it takes $340 \mathrm{~m} / 0.31 \mathrm{~m} / \mathrm{s}=1097$ seconds to travel the distance, or $T_{t}=18.3$ minutes
(c) Time of concentration
$T_{c}=T_{t 1}+T_{t 2}+\cdots . . T_{t m}=171$ mins +18.3 mins $=189 \mathrm{mins}=3.2$ hours SCS Lag for HEC-HMS $=t_{p}=\frac{2}{3} t_{c}=2 / 3 \times 3.2=2.1$ hours

Carclino: Reference Guide for Design Stom Hydrology

Pre-Development		Post-Development	
Calculation	alue	Calculation	Value
$R_{n}=\frac{A}{P}$ [Equation 13] So Time of open channel flow $=\frac{L}{V \times 60}$ [Equation 14]	- downstream elevation 123 m - length 95 m $\begin{aligned} \text { slope } & =\frac{(200-123)}{310} \\ & =0.248 \mathrm{~m} / \mathrm{m} \end{aligned}$ So: Velocity of open channel flow (V) $\begin{aligned} & =\frac{1}{0.12}\left(0.27^{2 / 3}\right)\left(0.248^{1 / 2}\right) \\ & =1.7 \mathrm{~m} / \mathrm{s} \end{aligned}$ Therefore: Time of open channel flow $\begin{aligned} & =\frac{310}{1.7 \times 60} \\ & =3 \text { minutes } \end{aligned}$		
Tc (component parts) $=$ overland flow + shallow concentrated flow + open channel flow + pipe flow [Equation 7]	$\begin{aligned} \text { Tc } & \text { (component parts) } \\ & =12.5+0.6+3 \\ & =16.1 \text { minutes } \end{aligned}$		

Save Our Hills (SOH): Time of Concentration Investigation - Pinehaven Stream - Whole Catchment
Gradient of Pinehaven Stream catchment
Contour Plan of whole catchment

Whole catchment down to confluence at Hulls Creek (i.e. all 15 sub-catchments A-0) Equal Area Slope = 3.7\%

Equal Area Method					
Elevation (m)	h (m)	x (m)	delta \times (m)	ave $\mathrm{h}(\mathrm{m})$	delta A (=h.delta
0.0	0.0	0.0			
10.0	10.0	435.0	435.0	5.0	2175.0
15.0	15.0	857.0	422.0	8.3	3516.7
20.0	20.0	1165.0	308.0	11.3	3465.0
40.0	40.0	1830.0	665.0	17.0	11305.0
60.0	60.0	2213.0	383.0	24.2	9255.8
80.0	80.0	2448.6	235.6	32.1	7572.9
90.0	90.0	2503.9	55.3	90.0	4977.0
100.0	100.0	2542.5	38.6	95.0	3667.0
110.0	110.0	2617.7	75.2	105.0	7896.0
120.0	120.0	2754.8	137.1	115.0	15766.5
130.0	130.0	2807.4	52.6	125.0	6575.0
140.0	140.0	2819.3	11.9	135.0	1606.5
150.0	150.0	2830.3	11.0	145.0	1595.0
160.0	160.0	2868.3	38.0	155.0	5890.0
170.0	170.0	2893.7	25.4	165.0	4191.0
180.0	180.0	2951.6	57.9	175.0	10132.5
190.0	190.0	2974.4	22.8	185.0	4218.0
200.0	200.0	2986.8	12.4	195.0	2418.0
210.0	210.0	2999.7	12.9	205.0	2644.5
220.0	220.0	3024.7	25.0	215.0	5375.0
220.0	220.0	3071.7	47.0	220.0	10340.0
240.0	240.0	3206.5	134.8	230.0	31004.0
260.0	260.0	3279.7	73.2	250.0	18300.0
280.0	280.0	3317.6	37.9	270.0	10233.0
300.0	300.0	3364.5	46.9	290.0	13601.0
320.0	320.0	3426.6	62.1	310.0	19251.0
340.0	340.0	3558.2	131.6	330.0	43428.0
345.0	345.0	3605.0	46.8	342.5	16029.0
					239138.0
L	3605.0				
S_{c}	0.037				

Catchment down to Gauge opposite Chatsworth Rd (i.e. sub-catchment A - N)

opp. Chats. $\%$	Equal Area Slope $=4.5 \%$						
	Equal Area Method						
	Elevation (m)	h (m)	x (m)	delta \times (m)	ave $\mathrm{h}(\mathrm{m})$	delta A (=h.delta	
	0.0	0.0	0.0				
	5.0	5.0	422.0	422.0	211.0	89042.0	
	10.0	10.0	730.0	308.0	384.0	118272.0	
	30.0	30.0	1395.0	665.0	636.8	423438.8	
	50.0	50.0	1778.0	383.0	865.0	331295.0	
	70.0	70.0	2013.6	235.6	27.5	6479.0	
	80.0	80.0	2068.9	55.3	80.0	4424.0	
	90.0	90.0	2107.5	38.6	85.0	3281.0	
	100.0	100.0	2182.7	75.2	95.0	7144.0	
	110.0	110.0	2319.8	137.1	105.0	14395.5	
	120.0	120.0	2372.4	52.6	115.0	6049.0	
	130.0	130.0	2384.3	11.9	125.0	1487.5	
	140.0	140.0	2395.3	11.0	135.0	1485.0	
	150.0	150.0	2433.3	38.0	145.0	5510.0	
	160.0	160.0	2458.7	25.4	155.0	3937.0	
	170.0	170.0	2516.6	57.9	165.0	9553.5	
	180.0	180.0	2539.4	22.8	175.0	3990.0	
	190.0	190.0	2551.8	12.4	185.0	2294.0	
	200.0	200.0	2564.7	12.9	195.0	2515.5	
	210.0	210.0	2589.7	25.0	205.0	5125.0	
	210.0	210.0	2636.7	47.0	210.0	9870.0	
	230.0	230.0	2771.5	134.8	220.0	29656.0	
	250.0	250.0	2844.7	73.2	240.0	17568.0	
	270.0	270.0	2882.6	37.9	260.0	9854.0	
	290.0	290.0	2929.5	46.9	280.0	13132.0	
	310.0	310.0	2991.6	62.1	300.0	18630.0	
	330.0	330.0	3123.2	131.6	320.0	42112.0	
335	335.0	335.0	3170.0	46.8	332.5	15561.0	
						227574.0	
	L	3170.0					3170
	S_{c}	0.045					

\$1 in $47 . \quad \approx 2 \%$ average gradient

${ }^{+}$Pinehaven Stream - Lower Catchment (extended to top of Pinehaven Road)'

Equal Area Method					
Elevation (m)	h (m)	x (m)	delta \times (m)	ave $\mathrm{h}(\mathrm{m})$	delta A (=h.delt
0.0	0.0	0.0			
10.0	10.0	81.5	81.5	5.0	407.5
20.0	20.0	136.8	55.3	15.0	829.5
30.0	30.0	175.4	38.6	25.0	965.0
40.0	40.0	250.6	75.2	35.0	2632.0
50.0	50.0	387.7	137.1	45.0	6169.5
60.0	60.0	440.3	52.6	55.0	2893.0
70.0	70.0	452.2	11.9	65.0	773.5
80.0	80.0	463.2	11.0	75.0	825.0
90.0	90.0	501.2	38.0	85.0	3230.0
100.0	100.0	526.6	25.4	95.0	2413.0
110.0	110.0	584.5	57.9	105.0	6079.5
120.0	120.0	607.3	22.8	115.0	2622.0
130.0	130.0	619.7	12.4	125.0	1550.0
140.0	140.0	632.6	12.9	135.0	1741.5
150.0	150.0	657.6	25.0	145.0	3625.0
150.0	150.0	704.6	47.0	150.0	7050.0
170.0	170.0	839.4	134.8	160.0	21568.0
190.0	190.0	912.6	73.2	180.0	13176.0
210.0	210.0	950.5	37.9	200.0	7580.0
230.0	230.0	997.4	46.9	220.0	10318.0
250.0	250.0	1059.5	62.1	240.0	14904.0
270.0	270.0	1191.1	131.6	260.0	34216.0
275.0	275.0	1237.9	46.8	272.5	12753.0
					158321.0
L	1237.9				
$\mathbf{S}_{\text {c }}$	0.207				

